Geodesic coordinates of order $r$

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-geodesic transitive graphs of prime power order

In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be   $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...

متن کامل

Geodesic Polar Coordinates on Polygonal Meshes

Geodesic Polar Coordinates (GPCs) on a smooth surface S are local surface coordinates that relates a surface point to a planar parameter point by the length and direction of a corresponding geodesic curve on S. They are intrinsic to the surface and represent a natural local parameterization with useful properties. We present a simple and efficient algorithm to approximate GPCs on both triangle ...

متن کامل

Higher Order Barycentric Coordinates

In recent years, a wide range of generalized barycentric coordinates has been suggested. However, all of them lack control over derivatives. We show how the notion of barycentric coordinates can be extended to specify derivatives at control points. This is also known as Hermite interpolation. We introduce a method to modify existing barycentric coordinates to higher order barycentric coordinate...

متن کامل

Geodesic Finite Elements of Higher Order

We generalize geodesic finite elements to obtain spaces of higher approximation order. Our approach uses a Riemannian center of mass with a signed measure. We prove well-definedness of this new center of mass under suitable conditions. As a side product we can define geodesic finite elements for non-simplex reference elements such as cubes and prisms. We prove smoothness of the interpolation fu...

متن کامل

Darboux coordinates for (first order) tetrad gravity

The Hamiltonian form of the Hilbert action in the first order tetrad formalism is examined. We perform a non-linear field redefinition of the canonical variables isolating the part of the spin connection which is canonically conjugate to the tetrad. The geometrical meaning of the constraints written in these new variables is examined.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1930

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1930-04992-7